Magic polyicosahedral core-shell clusters.

نویسندگان

  • G Rossi
  • A Rapallo
  • C Mottet
  • A Fortunelli
  • F Baletto
  • R Ferrando
چکیده

A new family of magic cluster structures is found by genetic global optimization, whose results are confirmed by density functional calculations. These clusters are Ag-Ni and Ag-Cu nanoparticles with an inner Ni or Cu core and an Ag external shell, as experimentally observed for Ag-Ni, and present a polyicosahedral character. The interplay of the core-shell chemical ordering with the polyicosahedral structural arrangement gives high-symmetry clusters of remarkable structural, thermodynamic, and electronic stability, which can have high melting points (they melt higher than pure clusters of the same size), large energy gaps, and (in the case of Ag-Ni) nonzero magnetic moments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeab...

متن کامل

Medium-sized double magic metal clusters: Al@Cu(54) (-) and Al@Ag(54) (-).

Medium-sized double magic metal clusters, Al@Ag(54) (-) and Al@Cu(54) (-), are predicted based on unbiased global search and density functional calculation. Both bimetallic core-shell clusters have icosahedral symmetry, and they are much lower in energies than all other low-lying isomers. In contrast, the icosahedral cluster Al@Au(54) (-) is a high-energy isomer. Both Al@Ag(54) (-) and Al@Cu(54...

متن کامل

Magic numbers for metallic clusters and the principle of maximum hardness.

It is shown that for relatively more stable metallic clusters (those with magic number of atoms) the chemical hardness (I-A) too is relatively larger. Thus the occurrence of magic numbers for metal clusters whose stability is determined by their electronic shell structure can be understood as a manifestation of the principle of maximum hardness. This may also represent a possible way of delinea...

متن کامل

Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared.

We demonstrate the synthesis of near-IR-emitting zinc blende CdTe/CdS tetrahedral-shaped nanocrystals with a magic-sized (approximately 0.8 nm radius) CdTe core and a thick CdS shell (up to 5 nm). These high-quality water-soluble nanocrystals were obtained by a simple but reliable aqueous method at low temperature. During the growth of the shell over the magic core, the core/shell nanocrystals ...

متن کامل

Magic rule for Al(n)H(m) magic clusters.

Using the electronic shell closure criteria, we propose a new electron counting rule that enables us to predict the size, composition, and structure of many hitherto unknown magic clusters consisting of hydrogen and aluminum atoms. This rule, whose validity is established through a synergy between first-principles calculations and anion-photoelectron spectroscopy experiments, provides a powerfu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 93 10  شماره 

صفحات  -

تاریخ انتشار 2004